Ферритовые сердечники для импульсных трансформаторов

Ферритовые сердечники для импульсных трансформаторов

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное — при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание "что-то подправить в консерватории". Объясняется это желание просто — существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней — просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных — EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Читайте также:  Сравнить планшеты самсунг и айпад

Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.

Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.

Мощность блока
питания, Вт
Размеры кольца, мм ;
(габаритная мощность, Вт)
Количество витков
первичной обмотки
Индуктивность
обмотки, мГн
25 R 20×12×6 2000НМ (33,8 Вт)
R 22,1×13,7×6,35 №87 (51,5 Вт)
50 R 22,1×13,7×12,5 №87 (100,1 Вт)
R 22,1×13,7×7,9 №87 (63,9 Вт)
R 27×18×6 2000НМ (85,3 Вт) 100 R 28×16×9 2000НМ (136 Вт)
R 32,0×20,0×6,0 №27 (141 Вт) 200 R 28×16×18 2000НМ (268 Вт)
R 29,5×19,0×14,9 №87 (297 Вт)
R 30,5×20,0×12,5 №87 (265 Вт)
R 34,0×20,5×10,0 №87 (294 Вт)
R 34,0×20,5×12,5 №87 (371 Вт)
R 38×24×7 2000НМ (278 Вт) 400 R 36,0×23,0×15,0 №87 (552 Вт)
R 38×24×14 2000НМ (565 Вт)
R 40×25×11 2000НМ (500 Вт) 800 R 40×25×22 2000НМ (998 Вт)
R 45×28×16 2000НМ (1036 Вт)
R 45×28×24 2000НМ (1580 Вт) 1500 R 50,0×30,0×20,0 №87 (1907 Вт)
R 58,3×32,0×18,0 №87 (2570 Вт)

Как следует мотать первичную обмотку трансформатора?


Рис. 2 а) б) в) г) д)

Если используются кольца 2000НМ отечественного производителя, то для начала — посредством наждачной бумаги скругляем наружные острые грани до состояния, приведённого на Рис.2 а).

Далее на кольцо следует намотать термостойкую изоляционную прокладку (Рис.2 б). В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, или сантехническую фторопластовую ленту.

Для буржуйских колец фирмы EPCOS первые два пункта практической ценности не имеют.

Настало время намотать однослойную обмотку «виток к витку» (Рис.2 в). Обмотка должна быть равномерно распределена по периметру магнитопровода — это важно!

Если в закромах радиолюбительского хозяйства не завалялся обмоточный провод необходимого диаметра, то обмотку можно намотать сразу в два, или несколько проводов меньшего диаметра (Рис.2 г). Не забываем, что зависимость тока от диаметра квадратичная и если, к примеру, нам надо заменить провод диаметром 1мм, то это будет не два провода по 0,5мм, а четыре (или два провода по 0,7мм).

Ну и для завершения первичного процесса поверх первичной обмотки трансформатора наматываем межобмоточную прокладку — пару слоёв лакоткани или другой изолирующей ленты (Рис.2 д).

А вот теперь мы плавно переходим к выполнению второй части упражнения.
Казалось бы, расчёты количества витков вторичной обмотки импульсного трансформатора настолько банальны и очевидны, что, как говаривал товарищ Мамин-Сибиряк — «яйца выеденного не стоят».
Да только вот опять — не складываются куличики в пирамидку, потому как далеко не каждый источник информации радует ожидаемым результатом. Поэтому для начала приведём формулу зависимости выходного напряжения от соотношения количества витков обмоток:
W1 (Uвх — Uдм1)/2 — Uнас ,
W2 (Uвых+Uдм2)

где Uвх — значение выпрямленного напряжения сети, равное 1,41×220≈310В,
Uдм1 — падение напряжения на входном диодном мосте ≈ 1В,
Uдм2 — падение напряжения на выходном диодном мосте ≈ 1В,
Uнас — напряжение насыщения на ключевом транзисторе ≈ 1,6В.
Подставив значения, получаем конечную формулу W2 = W1×(Uвых+1)/153.
Это формула верна для случаев, когда мы хотим получить расчётное значение выходного напряжения на холостом ходу.
Если же данный параметр нас интересует при максимальном токе нагрузки, то практика показывает, что количество витков вторичной обмотки следует увеличить на 10%.

Читайте также:  Как нарисовать ланч бокс с едой

Теперь, что касается диаметра провода вторичной обмотки трансформатора. Диаметр этот достаточно просто вычисляется по формуле:
D = 1,13× I / J ,
где I — ток обмотки, а J — параметр плотности тока, напрямую зависящий от мощности трансформатора и принимающий для кольцевых сердечников значения:
≈4,5 для мощностей до 50Вт; ≈4 для 50-150Вт; ≈3,25 для 150-300Вт и ≈2,75 для 300-1000Вт.

И в завершении приведу незамысловатый калькулятор для расчёта параметров вторичной обмотки импульсного трансформатора.

Точно так же, как и в случае с первичной обмоткой — вторичная должна быть как можно более равномерно распределена по периметру магнитопровода.

Количество вторичных обмоток ограничено только размерами магнитопровода. При этом суммарная величина снимаемых с обмоток мощностей не должна превышать расчётную мощность трансформатора.

При необходимости поиметь двуполярный источник питания, обе обмотки следует мотать одновременно, затем присовокупить начало одной обмотки к концу другой, а уже потом направить это соединение, в зависимости от личных пристрастий — к земле, средней точке, общей шине, корпусу, или совсем на худой конец — к GND-у.

Ну что ж, с трансформатором определились, пора озадачиться полным джентльменским набором настоящего мужчины — плавками с меховым гульфиком, а главное, непосредственно импульсным блоком питания, оснащённым такими значимыми прибамбасами, как устройства мягкого пуска и защиты от токовых перегрузок и КЗ.
Всё это хозяйство подробно опишем на странице Ссылка на страницу.

Ферриты марок 300ННИ, 300ННИ1, 350ННИ, 450ННИ, 1000ННИ, 1100ННИ, 1100НМИ (группа V) предназначены для импульсных режимов намагничивания. Из ферритов этой группы изготавливаются кольцевые и П-образные сердечники импульсных трансформаторов для аппаратуры различного назначения, работающей в импульсных режимах. Марки характеризуются величиной импульсной магнитной проницаемости и температурной стабильностью магнитной проницаемости. Для ферритов, применяемых в мощных импульсных трансформаторах, обычно приводятся зависимости значения удельных объемных магнитных потерь от магнитной индукции и длительности намагничивающего импульса. Удельные объемные магнитные потери при импульсном намагничивании являются основным фактором, определяющим перегрев сердечника.

В табл.1.5.1 приведены основные электромагнитные параметры ферритов для импульсных полей, а вспомогательные — в табл.1.5.2 и 1.5.3. На рис.1.5.1 показана зависимость импульсной магнитной проницаемости от температуры окружающей среды. Зависимость удельных объемных магнитных потерь ферритов марок 1000ННИ, 450ННИ, 1100НМИ от индукции приведены на рис. 1.5.2, а зависимость импульсной магнитной проницаемости от длительности импульса — на рис.1.5.3.

Основные электромагнитные параметры ферритов V группы.

Марка феррита μИ при τИ=
=1…3 мкс и fИ=
=0,5…5 кГц
HИ opt, A/м ΔμИ/μИ, %, в интервале температур, °С
Номинальное значение Предельное отклонение -60…+20 -40…+20 +20…+85 +20…+100
300ННИ* 300 +80
-50
64 -4…+8 -8…+4
350ННИ* 350 ±75 80 0…45 -30…+30
450ННИ 450 ±50 240 0…-25 0…+10
1000ННИ 1000 +300
-250
64 0…-30 0…-30
1100ННИ 1100 ±250 80 0…-50 0…-50
1100НМИ 1100 ±150 80 -25…+25 -25…+25
300ННИ* 300 ±50 80…240 -30…+30 -30…+30
Читайте также:  Как из стружки сделать опилки

* — Импульсная магнитная проницаемость μИ определяется при длительности импульса τИ = 0,5…3мкс.

Вспомогательные параметры ферритов V группы.

Марка феррита fкр, МГц, при tgδ=0,1 Параметры петли гистерезиса в статическом режиме h
&times10 9 при f=0,1 МГц
ρ, Ом&timesм Θ, °С, не менее Конфигурация сердечников
μmax H_, A/м, при μmax B, Тл Br, Тл Hc, A/м
при H_= 800 A/м
300ННИ 300ННИ*
350ННИ 450ННИ 1000ННИ
1100ННИ
1100НМИ
2,00 2,00
2,50 1,00 0,500
0,400
0,300
300 400
1000 2100 3000
3000
3000
240 160
80 56 32
32
32
0,30 0,22
0,26 0,37 0,30
0,27
0,40
0,28 0,06
0,120 0,160 0,090
0,080
0,150
160,0 96,0
48,0 40,0 16,0
20,0
24,0
23 33
38 31 7,6
5,0
3,8
10 104
107 103 103
10
0,10
240 160
180 230 120
110
180
Кольцевые, П-образные
Кольцевые
Кольцевые,
О-образные
Кольцевые, П-образные
Кольцевые

Значение dk для ферритов V группы составляет 4,7…4,9.

Относительный температурный коэффициент начальной магнитной проницаемости для ферритов V группы.

Несколько упрощенных формул для расчета обычных и импульсных трансформаторов ИБП и БП.

Упрощенная формула для расчета ферритовых трансформаторов для ИБП.
5760/F(кГц) = К
Sсеч/К = V(вольт) на 1виток

где:
F — частота преобразования в Гц.
S — сечение ферритового магнитопровода в мм.
V — количество вольт на 1 виток
К — коэффициент зависимости от частоты.

Упрощенная формула для расчета обычных трансформаторов 50Гц.
Sсеч.мм*0.0003=V(вольт) на 1 виток
где:
S — сечение магнитопровода в мм
V — кол.вольт на 1 виток

Упрощенная формула для определения сечения круглого обмоточного провода
D х D / 1.27 = Sсеч.мм
где:
D — диаметр провода
S — площадь сечения провода

Упрощенная усредненная формула для расчета необходимого сечения намоточного провода
A / 3.85 = Sсеч.мм
где:
A — номинальный ток нагрузки
S — площадь сечения провода

Пример расчета трансформатора импульсного БП.
Допустим, имеем Ш образный ферритовый сердечник с размерами центрального столбика 11 и 12мм. Необходимо определить площадь сечения магнитопровода.
Перемножаем размеры между собой 11х12=132мм Sсеч=132мм.кв. Один параметр уже есть!
О определяем частоту преобразования ИБП, возьмем к примеру 50кГц. F(Гц)=50кГц это второй параметр!
Теперь нужно определить коэффициент зависимости от частоты К. Берем первую формулу из файла: 5760/F(кГц)=К, подставляем цифры 5760/50=115 Kз.ч.= 115. Мы определили коэффициент зависимости от частоты, он равен 115
Берем вторую формулу из файла S/K=V(вольт) на 1виток. Снова подставляем цифры которые у нас уже есть. 132/115=1.1 вольт на 1 виток, то есть если нам нужно намотать 150В первичку для полумостовой схемы ИБП. Делим 150/1.1=136 витков. Остальные обмотки рассчитываются так же. Допустим нам нужна вторичка 12В, значит 12/1.1=11 витков.

Специально для начинающих: Артур (Левша)

Ссылка на основную публикацию
Adblock detector