Термисторы с отрицательным температурным коэффициентом

Термисторы с отрицательным температурным коэффициентом

Терморези́стор (термистор, термосопротивление) — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры [1] .

Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году [2] .

Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.

Содержание

Конструкция и разновидности терморезисторов [ править | править код ]

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative Temperature Coefficient») и положительным (PTC-термисторы, от слов «Positive Temperature Coefficient» или позисторы) температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для NTC-термисторов увеличение температуры приводит к падению их сопротивления.

Терморезисторы с отрицательным ТКС (NTC-термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа A III B V , стеклообразных, легированных полупроводников (Ge и Si), и других материалов. PTC-термисторы изготовляют из твёрдых растворов на основе BaTiO3, что даёт положительный ТКС.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

  • номинального (при 25 °C) электрического сопротивления;
  • температурного коэффициента сопротивления.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор и гальванически развязанный от него нагревательный элемент, задающий температуру терморезистора, и, соответственно, его электросопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого комбинированного прибора.

1 T = A + B ln ⁡ ( R ) + C [ ln ⁡ ( R ) ] 3 <displaystyle <1 over T>=A+Bln(R)+C[ln(R)]^<3>>

где T — температура, К;
R — сопротивление, Ом;
A,B,C — константы термистора, определённые при градуировке в трёх температурных точках, отстоящих друг от друга не менее, чем на 10 °С.

Одним из существенных недостатков «бусинковых» термисторов, как температурных датчиков, является то, что они не взаимозаменяемы и требуют индивидуальной градуировки [3] . Не существует стандартов, регламентирующих их номинальную характеристику сопротивление — температура. «Дисковые» термисторы могут быть взаимозаменяемыми, однако при этом лучшая допускаемая погрешность не менее 0,05 °С в диапазоне от 0 до 70 °С. Типичный 10-килоомный термистор в диапазоне 0—100 °С имеет коэффициенты, близкие к следующим значениям:

Читайте также:  Как сделать резинку из фатина

A = 1 , 03 ∗ 10 − 3 <displaystyle A=1,03*10^<-3>> ; B = 2 , 93 ∗ 10 − 4 <displaystyle B=2,93*10^<-4>> ; C = 1 , 57 ∗ 10 − 7 <displaystyle C=1,57*10^<-7>> .

ЭКСПЕРИМЕНТ 9 Терморезисторы

После проведения данного эксперимента Вы сможете оценивать функционирование схем, содержащих терморезисторы (термисторы).

* Источник постоянного напряжения

один терморезистор 1 кОм с отрицательным температурным коэффициентом, один резистор — 1/4 Вт, 5%, 1 кОм.

Все электрические проводники чувствительны к изменениям температуры. Обычная медная проволока имеет положительный температурный коэффициент; когда она нагревается, ее сопротивление увеличивается. Тем не менее, относительный рост сопротивления очень мал. В большинстве случаев избыток тепла не оказывает значительного влияния на сопротивление.

С другой стороны, имеются типы резисторов, сопротивление которых претерпевает большие изменения при относительно небольших температурных

колебаниях. Такие устройства находят применение.

Прочие типы резисторов

Терморезистор с отрицательным температурным коэффициентом

Специальный резистор, разработанный для больших изменений сопротивления в зависимости от температурных флуктуаций, известен как терморезистор или термистор. Термисторы обычно имеют отрицательный температурный коэффициент (NTC). Это означает, что когда температура терморезистора возрастает, сопротивление его падает, и наоборот. Даже при незначительном изменении температуры происходит значительное изменение сопротивления.

Подобные чувствительные элементы используются для создания различных элементов — от электронных термометров до детекторов — в тех или иных промышленных системах управления, в которых должен осуществляться текущий контроль (мониторинг) и/или управление температурой.

Терморезистор с положительным температурным коэффициентом

Имеются также термисторы с положительным температурным коэффициентом (РТС). Эти устройства увеличивают свое сопротивление при возрастании температуры. При этом их сопротивление изменяется более резко и круто, чем у терморезисторов с отрицательным температурным коэффициентом.

Хорошим примером терморезистора с положительным температурным коэффициентом являет ся нить лампы накаливания. Когда лампа накаливания выключена, нить накала имеет очень низкое значение сопротивления. Однако когда через лампу протекает ток, нить сильно накаляется и быстро нагревается до температуры белого каления. Это значительно увеличивает сопротивление нити. Например, стандартная лампа накаливания 100 Вт имеет в холодном состоянии сопротивление приблизительно 100 м. Когда же на лампу подается напряжение 120 В, нить нагревается с увеличением сопротивления до 1440м, то есть, отмечается рост сопротивления в 14, 4 раза. Характеристики лампы накаливания могут использоваться для целей регулирования в некоторых типах электрических и электронных схем.

Читайте также:  Какой фильтр для воды ставить первым

Имеется исключительный случай вариации сопротивления с изменением температуры. А именно, когда температура понижается до очень низкого уровня, сопротивление падает до нуля. Некоторые материалы фактически теряют свое сопротивление, когда их температура понижается до значений, несколько больших абсолютного нуля (-273°С). Это явление известно как сверхпроводимость. Продолжающиеся исследования обнаруживают новые материалы, сопротивление которых устраняется даже при более высоких температурах, что делает их более пригодными для применения на практике.

В данном эксперименте Вы поработаете с терморезистором, чтобы разобраться в его термочувствительных характеристиках.

1. Приготовьте две чашки или два стакана воды. Вы будете использовать их для изменений температуры терморезистора. Один стакан наполните очень горячей водой из-под крана. Другой стакан наполните холодной водой и добавьте в нее кубики льда.

2. Рассмотрите терморезистор. Как Вы можете видеть, это круглый диск из специального резистивного материала. Терморезистор имеет диаметр 1/4 дюйма, а к каждой стороне терморезистора припаяны проволочные выводы. Сначала возьмите терморезистор и измерьте его сопротивление при комнатной температуре при помощи Вашего мультиметра.

R = _ Ом (при комнатной температуре)

3. Закрепите измерительные выводы мультиметра на выводах терморезистора и погрузите корпус терморезистора в горячую воду. Подождите примерно 10 секунд и заметьте сопротивление. R = _____ Ом (в горячей воде)

4. Извлеките терморезистор из горячей воды и сразу же поместите его в стакан с холодной водой. Снова заметьте сопротивление через 10 секунд. R = _____ Ом (в холодной воде)

5. Основываясь на результатах, полученных в двух предыдущих шагах, запишите словами, как изменяется сопротивление в зависимости от изменений температуры.

6. Соберите схему, показанную на рисунке 9-1. Заметьте, что терморезистор подключается вместе с резистором 1 кОм как часть делителя напряжения к источнику питания 9 В. Заметьте, что


выходное напряжение снимается с выводов термистора. Измерьте теперь выходное напряжение при комнатной температуре.

Vo = __ В (при комнатной температуре)

7. Нагрейте паяльник и поднесите его приблизительно на расстояние 1/4 дюйма от терморезистора. Дайте ему нагревать терморезистор, а в это время следите за изменением напряжения на терморезисторе. Через 10 секунд запишите значение измеренного напряжения.

Vo = __ В (в нагретом состоянии) Дайте затем терморезистору охладиться, прежде чем Вы перейдете к шагу 8.

8. Модифицируйте схему эксперимента так, чтобы она выглядела подобно схеме, показанной на рисунке 9-2. Снова Вы используете терморезистор как часть делителя напряжения. Однако в данной схеме выходное напряжение снимается с резистора 1 кОм, а не с терморезистора.

Читайте также:  Фасад для керамического дома


Измерьте и запишите выходное напряжение, снимаемое с резистора 1 кОм, при комнатной температуре.

Vo = __ В (при комнатной температуре)

9. Снова нагрейте паяльник и поднесите его приблизительно на расстояние 1/4 дюйма от терморезистора. Дайте ему нагревать терморезистор, а Вы в это время следите за изменением напряжения на резисторе 1 кОм в течение приблизительно 10 секунд и замечайте, как изменяется напряжение. В конце 10-секундного периода запишите значение измеренного напряжения. Vo = __ В (в нагретом состоянии)

10. Как выходное напряжение варьируется в зависимости от температуры в каждой из схем?

1. Положительный температурный коэффициент означает:

а) когда температура уменьшается, уменьшается сопротивление;

б) когда температура увеличивается, увеличивается сопротивление;

в) когда температура уменьшается, сопротивление увеличивается;

г) когда температура варьируется, сопротивление изменяется.

2. В лампе накаливания сопротивление нити в горячем состоянии ниже, чем сопротивление нити в холодном состоянии:

а) высказывание верно,

б) высказывание неверно.

3. Полная потеря сопротивления при очень низких температурах известна как:

б) экстремальный температурный коэффициент,

г) холодное сопротивление.

4. Чтобы преобразовать изменение сопротивления терморезистора в вариацию напряжения, в какой тип схемы должен быть подключен терморезистор?

г) делитель напряжения.

5. Терморезисторы иногда используются в мостовых схемах:

4.3.1. Общие сведения

Сопротивление терморезистора с отрицательным температурным коэффициентом (ОТК), называемого такжетермистором, уменьшается при повышении температуры. Изменение сопротивления может быть вызвано изменением температуры окружающей среды или собственным нагревом / охлаждением резистора при различных электрических нагрузках.

Характеристика термистора экспоненциальная, она зависит от вида примененного материала, конструкции и изменения температуры.

4.3.2. Экспериментальная часть

Постройте статические характеристики R = f(U)иI = f(U)термистора. Изменение температуры происходит саморазогревом термистора при увеличении приложенного напряжения.

Замечание:Изменение температуры окружающей среды в данном эксперименте не рассматривается, потому что не всегда в стандартных электротехнических лабораториях имеется необходимое тепловое оборудование.

Порядок выполнения эксперимента

Соберите электрическую цепь согласно схеме (рис. 4.3.1) и измерьте ток Iи напряжениеU2на термисторе при постепенном увеличении напряженииU1 согласно табл. 4.3.1. Измерения должны быть выполнены с интервалами не менее 30 с, чтобы после каждого изменения напряжения достичь установившегося теплового состояния термистора. Измерение токов производите мультиметром, т.к. виртуальные приборы не дают достаточной точности при измерении малых токов (менее 10 мА). Напряжения можно измерять как мультиметром, так и виртуальным прибором. Напряжения больше 15 В можно получить , соединив последовательно два источника постоянного напряжения: 0…15 В и 15 В. Резистор 1 кОм включен для ограничения тока и предотвращения перегрева терморезистора.

Ссылка на основную публикацию
Тепловой насос вода вода из скважины
Геотермальное отопление от абиссинской скважины — экономия до 80% электроэнергии! По стоимости тепловой энергии такое же как при отоплении от...
Телефон показывает зарядку без зарядного устройства
В современном мире смартфон является незаменимой вещью, поэтому, когда любимый гаджет долго заряжается или вовсе не включается, это становится целой...
Телефон самсунг рейтинг лучших
Если вы ищете лучший телефон Samsung, тогда рейтинг поможет разобраться в их различиях. Посмотрите какой смартфон лучшие купить из всех...
Тепловой экран своими руками
Достаточно давно хотелось найти тепловой экран на выпускной коллектор, поскольку родной по ходу находится где то в недрах какой то...
Adblock detector