Трубы и арматура для газопроводов

Трубы и арматура для газопроводов

1 Трубы и соединительные детали

2. Трубопроводная арматура и оборудование газопроводов

3. Вспомогательные материалы

Трубы и соединительные детали

Стальные трубы.Для строительства систем газоснабжения применяют стальные прямошовные и спиральношовные свар­ные и бесшовные трубы, изготовленные из хорошо свариваю­щейся стали, содержащей не более 0,25 % углерода, 0,056 % серы и 0,046 % фосфора. Для строительства систем газоснабжения давлением до 1,6 МПастальные трубы выбирают в зависимости от минимальной расчетной температуры наружного воздуха рай­она строительства и способа прокладки (месторасположения) га­зопровода.

Трубы, предусмотренные для системы газоснабжения, долж­ны быть испытаны гидравлическим давлением на заводе-изгото­вителе или иметь запись в сертификате о гарантии того, что тру­бы выдержат гидравлическое давление, соответствующее требо­ваниям стандартов или технических условий на трубы.

Стальные трубы, как правило, соединяют сваркой. Сварные соединения стальных труб должны быть равнопрочные основ­ному металлу труб или иметь гарантированный заводом-изго­товителем согласно стандарту или техническим условиям на трубы коэффициенту прочности сварного соединения. Указан­ное требование следует вносить в заказные спецификации на трубы.

Изготовление соединительных частей и деталей для систем га­зоснабжения предусматривают из спокойной стали (литые, кова­ные, штампованные, гнутые или сварные) или из ковкого чугу­на в соответствии с ГОСТами и ОСТами, перечень которых рег­ламентирован СНиП 2.04.08—87.

Полиэтиленовые трубы.При проектировании подземных газопроводов необ­ходимо предусматривать использование газораспределитель­ных полиэтиленовых труб в соответствии с требованиями ГОСТ Р 50839-95. При строительстве газопроводов можно применять мерные и длинномерные трубы. При реконструкции стальных газо­проводов рекомендуют применять длинномерные трубы.

Соединительные детали газопроводов (втулки под фланцы, переходы, отводы, тройники и др.) следует предусматривать в со­ответствии с требованиями технических условий, утвержденных в установленном порядке.

Трубопроводная арматура и оборудование газопроводов

Выбор арматуры.С помощью газовой арматуры включают, от­ключают, изменяют расход, давление или направление газового потока, а также удаляют газы.

При выборе арматуры для установки в системах газоснабже­ния следует учитывать свойства металла и характер воздействия на него транспортируемого газа, а также условия эксплуатации (давление газа и температуру окружающей, среды).

По назначению газовую арматуру разделяют на:

запорную — для периодических герметичных отключений отдельных участков газопровода, аппаратуры и приборов;

регулирующую — для снижения давления и поддержания его в заданных пределах;

предохранительную — для предупреждения возможности по­вышение давления газа сверх установленных пределов;

арматуру обратного действия — для предотвращения движе­ния газа вобратном направлении;

аварийную и отсечную — для автоматического прекращения движения газа к аварийному участку при нарушении заданного режима.

Согласно ГОСТ 356—80 арматура и соединительные части трубопроводов характеризуются условным ру, рабочим рр и проб­ным рпр давлением. В зависимости от условного давления арма­туру можно разделить на три основных вида: низкого (р„ до 1,0 МПа); среднего у= 1,6. 6,4 МПа) и высокого ру = 6,4. 40 МПа) давления.

По способу присоединения к газопроводам, оборудованию и приборам арматуру подразделяют на фланцевую, муфтовую, цапковую и с концами под сварку.

Газовая запорная арматура.Запорная арматура, устанавливае­мая на газопроводах, должна обеспечивать: герметичность от­ключения; минимальные потери давления в открытом положе­нии, особенно на газопроводах низкого давления; удобство об­служивания и ремонта; быстроту открытия и закрытия, которые при ручном управлении должны производиться с небольшим усилием.

К запорным устройствам относят трубопроводную арматуру (краны, задвижки, вентили), гидравлические задвижки и затво­ры, а также быстродействующие (отсечные) устройства с пневма­тическим или электромагнитным приводом.

Применяемые в газовом хозяйстве задвижки классифициру­ют: по материалу, из которого они изготовлены (чугунные и стальные); по конструкции приводов затворов (с выдвижным или невыдвижным шпинделем) и самих затворов (параллельные и клиновые). Используемые в качестве отключающих устройств чу­гунные задвижки устанавливают вместе с линзовыми компенсато­рами. На газопроводах диаметром менее 100 мм применяют гну­тые или сварные крутоизогнутые П-образные компенсаторы. Стальные задвижки на прямых участках газопроводов устанавли­вают без компенсаторов, но с применением косых вставок, облег­чающих выполнение ремонтных работ при демонтаже отключаю­щего устройства, установке заглушки, замене прокладки и т.д.

Для внутренних газопроводов низкого давления, а также на­ружных (фасадных и цокольных) применяют проходные краны, которые по способу создания удельного давления на уплотнительных поверхностях подразделяют на натяжные и сальнико­вые, по способу присоединения к газопроводам — на муфтовые (резьбовые) и фланцевые, а по материалу — на латунные и чугун­ные.

Поворотные краны должны иметь ограничители поворота и указатели положений «Открыто» и «Закрыто». На кранах с диа­метром условного прохода до 80 мм должна быть риска, указыва­ющая направление движения газа в пробке.

Привод к затворам запорной арматуры может быть ручным, механическим (устройство оборудуют штурвалом и зубчатой пе­редачей к штоку затвора); пневматическим или гидравлическим (оборудуют цилиндром, который шарнирно соединяется со што­ком затвора); электрическим (устанавливают электродвигатель и передающий механизм к штоку затвора) и электромагнитным (устройство оборудуют электромагнитом, сердечник которого шарнирно связывается со штоком затвора).

На газопроводах промышленных и коммунально-бытовых предприятий в качестве запорных устройств наиболее часто ис­пользуют краны и задвижки, реже — вентили с ручным приво­дом, гидрозатворы и гидравлические задвижки. В связи с автома­тизацией процессов сжигания газа все шире применяют вентили и клапаны с электромагнитным приводом. Электрооборудование приводов и других элементов выполняют в соответствии с Пра­вилами устройства электроустановок (ПУЭ).

Шаровые краны, имеющие многочисленные конструктивные разновидности, можно разделить на два основных типа: краны с плавающей пробкой и краны с плавающими кольцами. Характе­ризуются они простотой конструкции, прямоточностью и низ­ким гидравлическим сопротивлением, постоянством взаимного контакта уплотнительных поверхностей.

На газопроводах низкого давления в качестве запорных уст­ройств допускается применение гидрозатворов. В настоящее вре­мя используют только стальные гидравлические затворы, в кото­рых устанавливают дополнительную продувочную трубу, к кото­рой в верхней части приваривают отвод с резьбой на конце для

изготав­ливают индивидуально строительно-монтажные организации в соответствии с требованиями, действующего типового проекта серии 4.9058/77 на Dу=50, 65, 80, 100 и 150 мм.

Вентили, краны, задвижки и затворы поворотные должны быть предназначены для газовой среды. Допускается применять для системы газоснабжения запорную арматуру общего назначе­ния при условии выполнения дополнительных работ по притир­ке и испытанию затвора арматуры на герметичность I класса.

Регуляторы давления газа.Управляют режимом работы в сис­теме газоснабжения с помощью регуляторов давления, которые являются основными узлами газорегуляторных пунктов (ГРП) и газорегуляторных установок (ГРУ), предназначенными для сни­жения и автоматического поддержания заданного (требуемого) давления газа перед потребителем, независимо от интенсивности расхода и начального давления газа. Под автоматическим регули­рованием понимают дросселирование потока газа, которое про­исходит без вмешательства человека и поддерживается на задан­ном уровне. При этом давление снижается независимо от отбора газа потребителем.

Регулирование давления газа осуществляют путем автомати­ческого изменения степени открытия дросселирующего узла ре­гулятора, вследствие чего автоматически изменяется гидравли­ческое сопротивление потока газа. При увеличении гидравличес­кого сопротивления перепад давления на дросселирующем узле возрастает и давление за регулятором снижается; при уменьше­нии же гидравлического сопротивления перепад давления умень­шается, а давление за регулятором возрастает.

Регулятор давления настроен на заданное давление в системе регулирования, определяет его в данный момент времени, срав­нивает заданное давление с имеющимся в данный момент и при разности значений выдает управляющую команду, направленную на уменьшение этой разницы, поддерживая при этом после себя требуемое давление. Работая в автоматическом режиме, он по­зволяет автоматизировать производственные операции, обеспе­чить безаварийную работу потребителя и повысить общую произ­водственную культуру.

Регулятор давления состоит из дросселирующего и реагирую­щего узлов. Реагирующий узел (в дальнейшем мембранный при­вод) измеряет заданный параметр: выходное давление. Дроссели­рующий узел — седло и плунжер — изменяет количество проте­кающего через него газа. Мембранный привод и дросселирую­щий узел соединены исполнительным узлом, который выполняет команду мембранного привода для восстановления заданного па­раметра выходного давления.

При равновесном состоянии системы регулирования количе­ство газа в газопроводе остается постоянным. Приток газа Qпр в систему регулирования равен количеству отбираемого, т.е. его расходу Qрасх. Следовательно, условием равновесия системы яв­ляется равенство Qпр=Qрасх. При этом давление после регулято­ра сохраняет свое постоянное значение р2=const. Если равнове­сие будет нарушено вследствие изменения расхода газа, т.е. Qпр¹Qрасх, тогда будет изменяться и заданное выходное дав­ление р2.

ГРП (ГРУ) и выходной газопровод составляют замкнутую динамическую систему, поэтому весь процесс регулирования надо рассматривать совместно (рисунок 1). При отклонении вы­ходного давления за регулятором от заданного изменяется поло­жение мембранного привода, который непосредственно или че­рез исполнительный узел изменяет проходное сечение дроссели­рующего узла в требуемом направлении.

В результате нарушенное равновесие между притоком и рас­ходом газа восстанавливается.

Регуляторы давления подразделяют по конструкции дроссели­рующего узла на одно- и двухседельные; по регулируемому вы­ходному давлению — на регулирующие перевод с высокого дав­ления (0,6 МПа и более) на высокое (0,3. 0,6 МПа), с высокого на среднее (более 0,005 МПа), с высокого на низкое (до 0,005 МПа), со среднего (до 0,3 МПа) на среднее (более 0,005 МПа), со среднего на низкое (до 0,005 МПа); по принципу действия — на регуляторы прямого и непрямого действия.

1-регулятор давления; 2-импульсный трубопровод; 3-система регулирования — газовая сеть; 4 — дросселирую­щий узел; 5— мембранный привод; 6— пружина

Рисунок 1 — Схема системы автоматического регулирования

Регуляторы прямого действия используют энергию рабочей среды для движения плунжера, т.е. энергию дросселируемого по­тока газа. Эти регуляторы в свою очередь делят на две группы: без командного узла; с командным узлом (пилотом). У регулято­ров первой группы изменение выходного давления воспринима­ется непосредственно мембранным приводом регулятора. Отно­сительно простая конструкция и большая надежность этих регу­ляторов обусловили их широкое применение (регуляторы РД-32М, РД-50М). Регуляторы второй группы конструктивно более сложны, так как имеют дополнительный регулятор управления (пилот), который использует энергию рабочей среды —дроссе­лируемого потока газа. К пилоту подают газ входного давления, которое в нем снижается и поступает к мембранному приводу исполнительного узла, выдавая сигнал на открытие дросселиру­ющего узла (РДУК2).

Регуляторами непрямого действия называют такие, у которых плунжер перемещается за счет энергии, подводимой извне (сжа­тый воздух, вода под давлением, электроэнергия).

Для комплектования шкафных ГРП типа ШРУ-н изготовляют регуляторы низкого давления Dу32 и Dу50 (прежнее обозначение РСД-32 и РСД-50), устройство и действие которых аналогичны РД-32М и РД-50М. Основное их отличие — отсутствие встроен­ных предохранительных сбросных клапанов.

Регуляторы давления универсальные конструкции Казанцева РДУК2 рассчитаны на применение газа с входным давлением до 1,2 МПа. В зависимости от производи­тельности отопительных котельных газорегуляторные установки оснащены регуляторами РДУК2-100/50 или РДУК2-100/70.

Регулятор РДУК2 состоит из двух основных узлов — регулиру­ющего клапана и пилота.

Регуляторы давления нового типа (блочные конструкции Ка­занцева РДБК) универсальны и отличаются повышенной надеж­ностью в работе. Изготовляют их в двух исполнениях: РДБК1 со­бран по схеме непрямого действия, имеет односедельный регу­лирующий клапан, стабилизатор, регулятор управления непря­мого действия, два регулируемых дросселя и дроссель из надмембранной камеры регулирующего клапана. Регулируемый дроссель из надмембранной камеры регулирующего клапана ус­танавливают на регуляторах D)у50 и Dу100.

РДБК1П собран по схеме прямого действия, имеет односе­дельный регулирующий клапан, регулятор управления прямого действия, два регулируемых дросселя, дроссель из надмембран­ной камеры регулирующего клапана.

Регуляторы РД-32М и РД-50М заменяются в настоящее время регуляторами РДБК1-25, РДУК2-50 и РДУК2-100 — соответ­ственно РДБК1-50 и РДБК1-100.

Запорно-предохранительная арматура.Предохранительные за­порные клапаны (ПЗК), применяемые в ГРП и ГРУ для прекра­щения подачи газа к потребителям при недопустимом его повы­шении или понижении, должны соответствовать следующим тре­бованиям.

Точность срабатывания должна составлять ±5 % заданных значений контролируемого давления для ПЗК, устанавливаемых в ГРП, и ±10% для ПЗК, устанавливаемых в шкафных ГРП, ГРУ, а также комбинированных регуляторов.

Читайте также:  В бачке унитаза капает вода

Номенклатура ПЗК фактически ограничена двумя типами — ПКН (ПКВ) и ПКК-40М. В ГРП с регуляторами РДУК приме­няют ПЗК типа ПКН, а в отопительных котельных с газовыми горелками, работающими на среднем давлении, — типа ПКВ.

Предохранительно-сбросные клапаны (ПСК).Устанавливают их в ГРП (ГРУ), соблюдая следующие требования.

ПСК применяют в основном двух конструктивных разновид­ностей — ПСК-50 и П-117, которые по принципу действия явля­ются малоподъемными пропорциональными. Клапан П-117 по­ставляют только в комплекте с шкафным ГРП типа ШРУ.

Пропускную способность ПСК проверяют в соответствии с Правилами устройства и безопасной эксплуатации сосудов, ра­ботающих под давлением.

ПСК, в том числе встроенные в регуляторы давления, должны обеспечивать начало открытия при превышении установленного максимального рабочего давления не более чем на 5 % и полное открытие V- при превышении этого давления не более чем на 15 %. Давление, при котором клапан полностью закрывается, ус­танавливают соответствующими стандартами или техническими условиями на изготовление клапанов, утвержденными в установ­ленном порядке.

Пружинные ПСК должны быть снабжены устройством для их принудительного открытия. На газопроводах низкого давления допускается установка ПСК без приспособления для принуди­тельного открытия.

Фильтры.Устанавливают их в ГРП (ГРУ) для защиты регули­рующих и предохранительных устройств от засорения механи­ческими примесями, имеющимися в газе. Газовые фильтры име­ют следующие основные параметры.

Фильтры должны иметь штуцера для присоединения к ним дифманометров или другие устройства для определения потери давления на фильтре (степень засорения кассеты). Фильтрующие материалы должны обеспечивать требуемую очистку газа, но не образовывать с ним химических соединений и не разрушаться от постоянного воздействия газа.

В котельных с большим расходом газа применяют кассетные сварные фильтры типа ФГ.

Компенсаторы.Компенсаторы служат для компенсации уд­линения стальных газопроводов от изменения внешней темпе­ратуры и температуры газа. В газовых колодцах их устанавли­вают также для облегчения замены и профилактики запорных устройств (задвижек), смены прокладок и других ремонтных работ.

Для газопроводов применяют компенсаторы гибкие волнис­тые, линзовые, а также резинотканевые. Для изготовления гну­тых и сварных компенсаторов следует использовать трубы, рав­ноценные принятым для соответствующего газопровода.

Применение сальниковых компенсаторов на газопроводах не допускается.

Плотность и срок службы фланцевых и резьбовых соединений во многом определяется правильным выбором уплотнительных материалов.

Для уплотнения фланцевых соединений следует применять про­кладки, изготовленные из паронита, резины маслобензостойкой, алюминия, меди.

Для уплотнения резьбовых соединений применяют: льняную прядь по ГОСТ 10330-76, которую перед намоткой на резьбу об­мазывают суриком (ГОСТ 19151—73) или свинцовыми белилами (ГОСТ 12287—77), замешанными на натуральной олифе (ГОСТ 7931— 76), фторопластовый материал (ФУМ) в виде ленты (ТУ 6-05-1388—Ф марки 1) и шнура (ТУ 6-05-1570-79 марок В и К). Фторопластовые материалы обмазки не требуют.

В зависимости от марки свариваемой стали с учетом техноло­гических инструкций на сварку, утвержденных в уставном по­рядке, подбирают типы и марки электродов, сварочной проволо­ки и флюсов. Материалы и конструкции, применяемые для за­щиты подземных газопроводов и резервуаров от коррозии, долж­ны соответствовать требованиям ГОСТ 9602—89.

Для анодных заземлителей катодных установок следует при­менять железнокремниевые, графитовые, графитопластовые и другие малорастворимые материалы, а также чугунные трубы без антикоррозионного покрытия.

Прокладки и подкладки для изоляции газопроводов от метал­лических и железобетонных конструкций необходимо изготавли­вать из полиэтилена по ГОСТ 16338—85Е или из других материа­лов, равноценных ему по диэлектрическим свойствам.

Газопровод представляет собой инженерную конструкцию, каждый элемент и узел которой решает важную определенную функциональную задачу и отвечает за безопасность, качество и бесперебойность функционирования сети. Разнообразные газовая арматура и оборудование различаются по сложности исполнения, по материалу изготовления, по назначению и по видам.

Арматура для газопроводов – это обширный класс приспособлений и устройств, которые монтируются на газопроводах, а также на приборах. С их помощью осуществляются отключение/включение, изменение направления, количества, давления газового потока или полное удаление газов. Широкий ассортимент этих деталей классифицирован, благодаря чему можно достаточно легко разобраться с вопросом классификации газовой арматуры.

Давайте вместе разберемся во всем многообразии арматуры для газовых трубопроводов и особенностях ее выбора.

Назначение газовой арматуры и оборудования

Газовая арматура и газовое оборудование предназначаются для установки на трубопроводах применяющихся для транспортировки, снабжения и распределения голубого топлива. С помощью этих механизмов включается и отключается подача, изменение давления, количества, направления газового потока. Арматуре присущи такие основные характеристики, как номинальное давление (условное) и номинальный диаметр.

Под номинальным давлением берется max давление при температуре 20 град., при котором гарантируется длительная служба разных соединений элементов и узлов с трубопроводом. Условный проход (DN) – это характеристика, которая используется в трубопроводных сетях в качестве общего параметра соединяемых частей.

Большая часть разновидностей арматуры состоит из запорного или же из дроссельного устройства. Это конструкции в виде корпуса снаружи закрытого крышкой.

Внутри корпуса перемещается затвор. В результате перемещения затвора относительно его седел меняется площадь участка, через который газ проходит. Этот процесс вызывает изменение гидравлического сопротивления.

Соприкасающиеся во время отключений частей газопровода поверхности затвора и седла носят название уплотнительных. В устройствах дроссельного типа поверхности затвора и седла, которые, в свою очередь, образуют регулируемый проход для транспортировки рабочей среды, носят название дроссельных.

Классификация арматуры для газопроводов

Все существующие разновидности газовой арматуры, в зависимости от ее назначения, можно разделить на:

  • запорную. Арматура, применяющаяся для периодических отключений отдельных участков газо провода, приборов, аппаратуры. К этому виду относятся газовые краны, вентили задвижки;
  • предохранительную. Служащую для предупреждения риска повышения давления газа больше установленных норм. К этой разновидности арматуры относится сбросной предохранительный клапан;
  • регулирующую. Предназначенную для изменения и поддержания в заданных пределах давления. Это заслонки, шибера и пр.;
  • обратного действия. Для предотвращения изменения направления движения газа;
  • аварийную и отсечную. Для быстрого автопрекращения движения газа по направлению к аварийному участку в случае нарушения заданного режима. К этой разновидности относится запорно-предохранительный клапан;
  • конденсатоотводящую. Ту, которая удаляет в автоматическом режиме конденсат, накапливающийся в конденсато -сборниках и на нижних участках трубопроводных сетей;
  • контрольную. Определяет давление проходимой массы, температуру и пр.

По способу управления арматура может быть двух типов: управляемая и автоматическая. Первая приводится в действие ручными манипуляциями или при помощи привода: пневматического, гидравлического, электромагнитного, электрического.

Процесс управления вручную отличается приложением больших усилий и потерей времени. Гораздо чаще устанавливается привод и сохраняется возможность аварийного управления на случай возникновения аварий. А вторая действует при помощи устройств автосрабатывания .

По способу подсоединения оборудование и любая арматура для систем газоснабжения бывают:

  • фланцевые – применяющиеся для арматуры с проходом для среды больше 50 мм. Присоединение к трубам осуществляется посредством свинчивания фланцев. Основное преимущество такого соединения – возможность многократных переустановок, большая прочность и надежность. Также можно отметить универсальную применяемость. В качестве недостатка выделяют только большую массу и крупные габариты таких деталей;
  • муфтовые – используются для присоединения оборудования имеющего проход 65 мм и меньше. Подсоединение производится при помощи муфт с резьбой расположенной изнутри. Недостаток муфтовых соединений в том, что резьба постепенно стирается;
  • цапковые с нарезанной наружной резьбой. Одно устройство ввинчивается при помощи резьбы в другое устройство;
  • сварочные – это редко применяющиеся на сегодняшний день неразборные соединения. Плюсы этого способа – надежная герметичность и сведение к минимуму обслуживающих мероприятий. К недостаткам можно отнести возникающую при необходимости ремонта сложность демонтажа соединения, когда участок газопровода просто срезается;
  • ниппельные – присоединение арматуры производится при помощи ниппеля;
  • стяжные – патрубки соединяются с фланцами труб шпильками с гайками, которые располагаются вдоль арматуры;
  • штуцерные – присоединение арматуры производится при помощи штуцера, накидной гайки и уплотнительных колец. Это надежный метод соединения с возможностью демонтажа.

Кроме перечисленных выше, существуют и другие способы соединения газовой арматуры, но используются они, не так часто.

Также не стоит забывать, что от качества выполненного соединения будет зависеть функциональность трубопровода и надежность всей газораспределительной системы.

Условные обозначения газовой арматуры

Применяющаяся в газовом хозяйстве арматура стандартизована. На каждой детали стоит обязательно шифр, состоящий из 4 частей.

Первые 2 цифры шифра – это вид арматуры:

  • 11 – краны для трубопроводов;
  • 14,15 – запорные вентили;
  • 16 – обратные подъемные клапаны;
  • 17 – клапаны предохранительные;
  • 19 – обратные поворотные клапаны;
  • 25 – регулирующие клапаны;
  • 30, 31 – запорные задвижки;
  • 32 – затворы.

На втором месте в шифре стоит условное обозначение материала изготовления корпуса: углеродистая сталь – с, кислото стойкая нержавеющая сталь -нж, серый чугун – ч, чугун ковкий – кч, бронза, латунь – бр, винипласт – вп, легированная сталь – лс, алюминий – а.

На третьем месте в шифре стоит порядковый номер детали. На четвертом находится обозначение материала, из которого сделаны уплотнительные кольца: бронза или латунь – б, нержавеющая сталь – нж, резина – р, эбонит – э, баббит – бт, кольца уплотнительные отсутствуют – бк.

Особенности запорной арматуры

Запорная арматура наиболее часто встречается в газовых системах. Она применяется для регулировки давления газопровода и действует по такому же принципу, что и в водоводах. Однако к деталям в газовой отрасли предъявляются более высокие требования по безопасности.

Если концентрация газа в воздухе достигнет критического значения, тогда достаточно всего малейшей искры и может произойти настоящая катастрофа.

По типу перемещения функционального механизма запорная арматура для газопроводов разделяется на следующие виды:

  • кран – в кране запирающий элемент с телом вращения, перемещается, одновременно вращаясь вокруг своей оси. Относительно направления потока может располагаться произвольным образом;
  • затвор – в этой детали дисковидный элемент вращается вокруг своей оси под углом или перпендикулярно относительно потока;
  • вентиль – в детали тело запирания на шпинделе перемещается возвратно-поступательно параллельно потоку;
  • задвижка – в ней элемент регулировки перемещается перпендикулярно к потоку.

Можно резюмировать, что к запорной арматуре относятся устройства, которые предназначаются для герметичного отключения участков газопровода. Эти устройства должны гарантировать герметичность отключения, быстроту производимых действий, малое гидравлическое сопротивление и удобство в обслуживании.

Принцип работы задвижки

Чаще всего на трубопроводах из разных видов запорной арматуры для газового оборудования можно встретить задвижки. Именно они используются, когда необходимо перекрыть газовый поток в газопроводах с диаметрами условных проходов от 50 мм до 2000 мм, когда рабочее давление находится в диапазоне 0,1–20 МПа.

В задвижках поток газа регулируется изменением положения затвора относительно уплотняющих поверхностей. Шпиндель невыдвижной при открывании не выдвигается из крышки. При его вращении для открытия отверстия ходовая гайка наворачивается на него поднимая либо опуская затвор. В этой разновидности задвижек ходовой узел находится внутри рабочей среды, поэтому он больше подвержен негативному действию коррозии.

Аппаратура с выдвижным шпинделем осуществляет перемещение шпинделя и затвора вращением резьбовой втулки, при этом верхняя часть шпинделя выдвигается вверх. Преимуществом такой конструкции является отсутствие влияния внешней среды на ходовой узел.

Задвижки различаются по устройству запоров на 2 типа. Клиновые имеют затвор с уплотнительными поверхностями, расположенными под определенным углом друг к другу. Также они производятся с шарнирным затвором, состоящим из 2-х дисков и клина сплошного. Задвижки параллельные имеют затвор состоящий из 2-х дисков, между которыми располагается клин распорный.

Для газопроводов рассчитанных на давление до 0,6 МПа применяют задвижки изготовленные из серого чугуна, для газопроводов, в которых применяется напор под давлением больше 0,6 МПа – из стали.

Читайте также:  Вешалки для гардеробной в леруа мерлен

Но какие можно отметить преимущества задвижек в сравнении с остальной запорной арматурой? В открытом положении отмечается незначительное сопротивление потоку, кроме этого нет поворотов газовой среды. Задвижки имеют малую строительную длину. Они просты в обслуживании и обеспечивают возможность движения газа в любую сторону.

Отдельно в этой категории можно выделить заслонки. Они относятся к запорно-регулирующему оборудованию, благодаря которому регулируется расход газа, также возможно прекратить его подачу в газопроводе. Заслонки состоят из корпуса, запорного дискового органа, приводного вала.

Заслонки можно применять в широком диапазоне температур или давлений среды. Они имеют простую конструкцию, малую массу и небольшую металлоемкость. У заслонок небольшая строительная длина и минимальное количество элементов. Большой их плюс – доступная цена.

За давлением на современных газопроводах следит множество чувствительных сенсоров, фиксирующих малейшие отклонения и передающие информацию о них на пульт диспетчеру.

Для чего нужны краны?

Кроме вышеперечисленных устройств к запорной арматуре относятся краны и вентиля, необходимые для скорейшего подключения/отключения прибора или регулирования расхода рабочей среды. Эти детали по форме затвора можно разделить на шаровые, цилиндрические, конусные.

Чтобы достигнуть более высокой герметизации в кране, между уплотняющими поверхностями вводится под давлением специальная консистентная смазка. Она заправляется в пустотелый канал в верхней части и завинчиванием болта продавливается по каналам в существующий зазор между пробкой и корпусом.

Пробка немного приподнимается вверх, зазор увеличивается и обеспечивается легкость поворота. Латунная прокладка и шаровой клапан предотвращают выдавливание смазки с последующим просачиванием газа.

Кроме кранов, нуждающихся в смазывании применяют в газопроводах простые поворотные краны. Их можно разделить на натяжные, сальниковые, самоуплотняющиеся. Их можно устанавливать на надземных газопроводах, внутри-объектовых газопроводах, на вспомогательных линиях (на продувочных газопроводах и пр.).

Конденсатосборники и компенсаторы

Для сбора и удаления воды и конденсата на низших уровнях газопроводов устанавливают конденсатосборники .

Они могут быть разной емкости: большая емкость необходима, если транспортируемый газ имеет большую влажность, меньшая подходит для транспортировки сухого газа. Кроме этого, в зависимости от величины давления проходящей рабочей среды конденсатосборники различаются на устройства низкого, среднего, большого давлений.

Устройства низкого давления – это емкость, с дюймовой трубкой выведенной под газовый ковер. Трубка заканчивается муфтой и пробкой. Через нее удаляется конденсат, замеряется давление, продувается газопровод.

Устройства среднего и высокого давления дополнительно оснащены еще одной защитной трубкой и краном на внутреннем стояке. Сверху стояка имеется отверстие для выравнивания давления рабочей среды в футляре и в стояке. Без отверстия конденсат бы под давлением газа заполнял стояк, что могло привести к его разрыву при пониженных температурах.

Под воздействием давления газа осуществляется автооткачка конденсата. Когда краник закрыт, газ противодействует конденсату и он сползает вниз. Когда краник открывается конденсат поднимается на поверхность.

При эксплуатации газопроводов разница в температуре может достигать нескольких градусов. Такая большая величина изменения может вызвать напряжение в несколько десятков МПа. Поэтому, для обеспечения нормальной работы газопровода нужно использовать компенсаторы. Они могут быть линзовыми, П-образными, лирообразными и пр.

Больше распространены линзовые и сильфонные компенсаторы. П-образные и лирообразные компенсаторы изготавливаются из гнутых, часто цельнотянутых труб. Их основной недостаток – большие размеры. На трубопроводах в горных и сейсмо -опасных районах устанавливают резинотканевые устройства, которые способны принимать деформации и в продольном, и в поперечном направлениях.

Соединительная арматура газопроводов

В процессе монтажа газопровода может возникнуть необходимость соединения труб из разных материалов или разного диаметра. В этом случае встраивается в состав сети соединительный фланцевый элемент – вспомогательные детали стыковки.

К этой категории арматуры относятся фланцевые адаптеры, хомуты, заглушки, соединительные муфты, отводы, крестовины, тройники, словом детали, в конструкции которых не предусмотрено наличие запорно-регулирующего механизма.

Для разветвления газопровода служат тройники и отводы. Они устанавливаются в случаях, когда труба доходит до распределительного участка для какого-либо населенного пункта, однако этот пункт конечным не является.

При помощи регулирующей арматуры трубопровод делится и часть транспортируемого газа уходит в населенный пункт, а часть транспортируется дальше.

Приборы КИПиА в газопроводных системах

Кроме всего вышеперечисленного, в газопроводных системах применяются многочисленные приборы КИПиА (контрольно-измерительные приборы и автоматика) .

Наиболее востребованными устройствами, использующимися в газовых системах являются:

  • сигнализаторы загазованности;
  • оборудование для аварийного отключения поступающего газа;
  • оборудование для измерения объема прошедшего газа;
  • электронные регуляторы прошедшего объема газа;
  • автономные блоки питания;
  • газовые клапаны для автоматизации разных процессов и оптимизации работы трубопроводов;
  • газовые регуляторы для регулирования объема проходящей через какой-то участок трубопровода среды.

Такие устройства являются высокотехнологичным оборудованием, эксплуатирующимся в самых разных условиях.

Особенности выбора арматуры и оборудования

Выбирая арматуру для газовых трубопроводов следует особо тщательно отнестись к химическим и физическим свойствам материала из которого она изготовлена.

Самыми востребованными материалами для изготовления газовой арматуры являются чугун и сталь. Это связано с требованиями к повышенному уровню прочности и надежности. Полимерные элементы, которые прекрасно подходят для водоводов здесь неприменимы, вдобавок их легко можно повредить.

Специалисты не рекомендуют использовать на газовых трубопроводах оборудование с уплотнительными вставками из бронзы. Это связано с тем, что в составе СУГ присутствует сероводород, который может оказывать негативное влияние на бронзу и медные сплавы.

Выводы полезное видео по теме

О том, как производится техническое обслуживание запорной арматуры на газопроводе можно узнать из следующего видеоролика:

О конструктивных особенностях клиновой и шланговой задвижек пойдет речь в этом видео:

Все газовые трубопроводы относятся к объектам повышенной опасности, поэтому к выбору газовой арматуры и оборудования стоит отнестись со всей серьезностью, а, при необходимости, посоветоваться со специалистами. Только качественная газовая запорная арматура сможет обеспечить удобство обслуживания, быстроту ремонта, высокую герметичность узлов трубопровода.

Если у вас есть вопросы по теме статьи, или можете дополнить наш материал интересными сведениями, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Для строительства газопроводов применяют стальные бесшовные, сварные прямошовные и спирально-шовные трубы. Трубы изготовляют из хорошо сваривающихся сталей, содержащих не более 0,25% углерода, не более 0,56% серы и не более 0,046% фосфора. Для систем газоснабжения следует применять трубы, изготовленные, как правило, из углеродистой стали обыкновенного качества по ГОСТ 380—71* и качественной стали по ГОСТ 1050—74**. В зависимости от расчетных значений наружных температур, способа прокладки (надземная, наземная, подземная), диаметра трубопровода и его назначения ГОСТы и СНиПы устанавливают нормы на материалы, которые возможно применять для изготовления труб и на способы их производства (бесшовные, горячедеформированные; электросварные прямошовные или со спиральным швом и др.). Сварные швы стальных труб должны быть равнопрочны основному металлу трубы. Трубы подвергают гидравлическим испытаниям на заводах-изготовителях. Необходимое внутреннее давление при испытании определяют по формуле где р„ — испытательное давление, МПа; R — расчетное значение напряжения, принимаемое равным 85% предела текучести, МПа; б, DB— соответственно минимальная толщина стенки и внутренний диаметр трубы, мм. Минимальный условный диаметр для распределительных газопроводов принимают обычно равным 50 мм, а для ответвлений к потребителям — 25 мм. Толщина стенки трубы для подземных газопроводов должна быть не менее 3 мм, а для надземных — не менее 2 мм. Толщина стенок труб для подводных переходов должна быть на 2 мм больше расчетной, но не менее 5 мм. Для их строительства следует использовать длинномерные сварные трубы. Соединение труб осуществляют сваркой. Качество сварных стыков контролируют. У наружных газопроводов фланцевые соединения устанавливают для присоединения задвижек, кранов и другой арматуры. Для уплотнения применяютпаронит, резину и другие материалы в соответствии со СНиП. Резьбовые соединения допустимы при установке кранов, пробок и муфт на гидрозатворах и сборниках конденсата, на надземных вводах газопроводов низкого давления в местах установки отключающих устройств и для присоединения контрольно-измерительных приборов. На внутренних газопроводах резьбовые и фланцевые соединения устраивают в местах установки арматуры, газовых приборов и другого оборудования. Кроме указанных выше случаев резьбовые соединения могут быть применены при монтаже газопроводов низкого и среднего давления из узлов, заготовленных на заводах строительно-монтажной организации. Разборные соединения газопроводов должны быть доступны для осмотра и ремонта. Для газоснабжения поселков и сельских населенных пунктов используют полиэтиленовые газопроводы с давлением газа до 0,3 МПа. Давление газа в межпоселковых газопроводах может быть до 0,6. МПа. Трубы допускается прокладывать только под землей на глубине не менее 1 м до верха трубы. Кроме того, СНиП 2.04.08-87 предусматривает другие ограничения, связанные с применением полиэтиленовых труб, которые следует выполнять при проектировании и строительстве. Для подземной прокладки газопроводов применяют полиэтиленовые трубы с маркировкой «газ», изготовленные в соответствии с действующими техническими условиями. Трубы соединяют на сварке. Ответвления к пластмассовым газопроводам присоединяют с помощью стандартных фасонных частей, а также врезкой в стальные вставки, которые

должны быть не более 1 м. Арматуру и конденсатосборники присоединяют также стальными вставками. Переходы газопроводов под железнодорожными и трамвайными путями, автомобильными дорогами, а также при пересечении сложных препятствий

осуществляют из стальных труб. Разъемные соединения полиэтиленовых труб, а также их соединение с арматурой, оборудованием и металлическими газопроводами целесообразно осуществлять с помощью фланцев, устанавливаемых в колодцах. Соединения полиэтиленовых труб со стальными газопроводами высокого давления выполняют разъемными фланцами. Исследования разъемных соединений показали, что лучшие характеристики имеют фланцевые соединительные устройства заклинивающего типа (рис. 4.2).

Рис. 4.2. Универсальное клиновое соединение (УКС) а — конструкция для жестких труб: б — конструкция для полиэтиленовых труб; 1— соединяемые трубы; 2—конические фланцы; 3— уплотнительиое кольцо; 4—соединительные болты

Основным достоинством пластмассовых труб являются их высокая коррозионная стойкость, малая масса, легкая обработка труб и меньшее, чем у стальных, гидравлическое сопротивление (примерно на 20%). Вместе с тем пластмассовые трубы обладают меньшей механической прочностью, чем стальные (предел прочности при растяжении для полиэтиленовых труб 10. 40 МПа), меньшей температуростойкостью и старением (т. е. ухудшением физико-механических характеристик со временем). Температурный предел применимости полиэтиленовых труб составляет —40 °С.

В качестве запорных устройств на газопроводах применяют краны и задвижки. Вентили из-за больших потерь давления нашли ограниченное применение только для газопроводов небольших диаметров при высоких давлениях газа, когда гидравлическое сопротивление запорного устройства не имеет существенного значения. Для газопроводов низкого давления в качестве отключающих устройств находят применение гидравлические затворы. Краны обеспечивают большую герметичность отключения, чем

задвижки. Они являются надежными и быстродействующими устройствами. Вместе с тем с помощью кранов трудно обеспечить плавное регулирование потока газа. Задвижки имеют преимущество в плавной регулировке подачи газа, но недостаточно герметичны. Негерметичность задвижек объясняется тем, что поток газа постоянно омывает притертые поверхности и вызывает эрозию их, образуя различного рода неровности. Кроме того в нижней части корпуса задвижки, под затвором, могут скапливаться различные твердые частицы, пыль и грязь и препятствовать ее плотному закрытию.

Рис. 4.3. Кран чугунный фланцевый со смазкой

Учитывая изложенное, применение в качестве отключающих устройств кранов является предпочтительным. Краны широко применяют для газопроводов малых диаметров. Их используют как для отключения газопроводов, так и для регулирования потока газа, поступающего к горелкам. В зависимости от способа герметизации краны разделяют на натяжные и сальниковые. У натяжных кранов пробка прижимается к корпусу усилием, создаваемым гайкой, навинченной на хвостовик. У сальниковых кранов пробка прижимается давлением сальниковой буксы. Краны изготовляют из бронзы, латуни и чугуна. Бронзовые и латунные краны устанавливают в тех местах, где в процессе эксплуатации ими приходится часто пользоваться, чугунные и комбинированные краны — где ими пользуются редко. Сальниковые краны применяют на промышленных газопроводах. В зависимости от способа присоединения краны разделяют на муфтовые, цапковые и фланцевые. Для возможности демонтажа муфтовых кранов на газопроводах устанавливают сгоны. Краны имеют диаметры условных проходов от 15 до 100 мм. Их рассчитывают на рабочее давление 0,01. 0,6 МПа. Для надземных и подземных газопроводов применяют краны со смазкой, чугунные при рабочем давлении до 0,6 МПа и стальные при большом давлении (до 6,4 МПа).Смазка обеспечивает герметичность затвора, повышает сопротивление коррозии, уменьшает износ уплотнительных поверхностей и облегчает поворачивание пробки. Смазку закладывают в канал, расположенный в хвостовике пробки. При ввертывании нажимного болта смазка поступает в специальные канавки, имеющиеся в пробке, и равномерно смазывает все уплотнительные поверхности. На рис. 4.3 показан чугунный фланцевый кран со смазкой. Такие краны изготовляют диаметром 25. 100 мм. Они являются герметичными отключающими устройствами для городских и внутриобъек- товых газопроводов. Стальные краны типа КС (рис. 4.4) предназначены для установки на газопроводах и нефтепроводах. Они рассчитаны на давление 1,6; 4 и 6.4 МПа. Их выпускают в двух модификациях: с ручным приводом (КСР) диаметром 50. 80 мм и с пневмоприводом (КСП) диаметром 50. 100 мм. Существуют краны со смазкой, предназначенные для подземной установки без колодцев. Их выпускают диаметром 400, 500 и 700 мм и применяют для магистральных газопроводов.

Читайте также:  Как сделать крыльцо из бетона своими руками

Рис. 4.4. Край проходной со смазкой фланцевый, КСР иа py= 1,6 МПа

Задвижки в качестве запорной арматуры используют на газопроводах всех давлений с диаметром 50 мм и более. Их используют также для регулирования подачи газа в горелки котлов и печей. При давлении газа до 0,6 МПа применяют чугунные задвижки, а при большем — стальные. Параллельные задвижки применяют для газопроводов с давлением до 0,3 МПа, а клиновые — для всех давлений. На газопроводах больших диаметров и при высоких давлениях газа используют задвижки, оборудованные редуктором с червячной передачей или электроприводом. Для облегчения подъема затвора задвижки имеют обводной трубопровод с краном для выравнивания давления по обе стороны затвора.

На подземных газопроводах отключающую арматуру устанавливают в колодцах. Колодцы выполняют из железобетона и кирпича. Они должны быть водонепроницаемыми. При подаче сухого газа для газопроводов небольших диаметров B5. 100 мм) целесообразно использовать мелкие малогабаритные колодцы. Такие колодцы можно устанавливать в непучинистых или малопучинистых грунтах. На рис. 4.5 показана конструкция мелкого железобетонного колодца для установки кранов (Z)y=25. 100 мм). Одним из достоинств мелких колодцев являются обслуживание и ремонт запорного органа с поверхности земли. Задвижки устанавливают в колодцах с габаритами, обеспечивающими доступ обслуживающему персоналу. Для снятия монтажных напряжений с фланцев задвижки и температурных напряжений в колодце после задвижки по ходу газа устанавливают линзовый компенсатор. Наличие компенсатора облегчает монтаж и демонтаж задвижек в процессе эксплуатации.

Рис. 4.5. Установка кранов: Dу = 25. 100 мм в мелком железобетонном кольце, 1— кран проходной сальниковый фланцевый; 2— отводы из бесшовных труб; 3— железобетонный колодец; 4 — железобетонное днище

На рис. 4.6 показан двухлинзовый компенсатор, рассчитанный на давление до 0,6 МПа. Конструкция железобетонного колодца для установки задвижек (Z)y=100. 400 мм) показана на рис. 4.7. При устройстве колодцев в водонасыщенных грунтах применяют гидроизоляцию: наружные стены колодца оклеивают борулином, бризолом или штукатурят водонепроницаемым цементом. При установке в колодце стальной задвижки допускается устраивать косую фланцевую вставку в качестве монтажного компенсирующего устройства. Отключающие устройства на газопроводах устанавливают в наземных шкафах и на стенах зданий. При пересечении железных и шоссейных дорог, коллекторов и колодцев, при необходимости прокладки газопроводов в непосредственной близости от жилых и общественных зданий или на малой глубине ставят футляры. Их используют также при производстве работ закрытым способом. В этом случае футляр предварительно продавливают через грунт и укладывают в него газопровод. На рис. 4.8 показан футляр, предназначенный для газопроводов с давлением до 0,3 МПа при пересечении железных дорог, трамвайных путей и т. д. Футляр оборудуют контрольной трубкой, выводимой под ковер. С помощью трубок по наличию или отсутствию газа контролируют плотность газопровода. Конструкция опоры газопровода в футляре показана на рис. 4.9. При наличии блуждающих токов применяют диэлектрические опоры.

Рис. 4.6. Двухлиизовый компенсатор с одним фланцем иа ру= = 0,3 МПа

1— фланец; 2, 8— стойки; 3— тяга; 4— патрубок; 5— полулинза; 6— стакан; 7— ребро;

Рис. 4.7. Колодец железобетонный с установкой двух задвижек: ОУ1 = 100. 200, 0,2= = 200. 400 мм 1— задвижка параллельная; 2— компенсатор двухлинзовый; 3— газопровод

Рис. 4.8. Конструкция конца футляра 1— битумная эмаль; 2— промасленная пенька; 3— контрольная трубка d= 50 мм; 4— муфта d= 50 мм; 5— пробка; в—ковер малый; 7—подушка под ковер: 8—опора

Рис. 4.9. Конструкция опоры газопроводов в футляре1— скоба; 2— крепежная проволока; 3— полоз; 4— планка; 5— обертки из гидроизола, толя, рубероида и аналогичных материалов

Футляры для газопроводов высокого давления имеют сальниковые уплотнения и трубопровод, отводящий газ из футляра в атмосферу при неплотности газопровода или при разрыве стыка. Этот трубопровод отводят от пересекаемого препятствия в безопасное место и оборудуют дефлектором. На рис. 4.10 показано сальниковое уплотнение для футляров. При использовании влажного газа в нижних точках газопроводов устанавливают сборники конденсата. Их конструкция и размеры зависят от давления газа и количества конденсирующейся влаги. Конденсатосборники небольшой вместимости целесообразно устанавливать в условиях подачи осушенного газа. В этом случае конденсатосборники используют для удаления влаги, попавшей в газопровод при строительстве, при эксплуатационных промывках и т. д. Трубки конденсатосборников используют при продувках газопроводов и выпуске газа при ремонте. Сборник конденсата для газопроводов низкого давления при использовании осушенного газа показан на рис. 4.11. Конденсат периодически удаляют через трубку с помощью насоса или вакуум-цистерны. На трубке имеется электрод для измерения разности потенциалов между трубой и землей. Сборник конденсата для газопроводов среднего и высокого давления показан на рис. 4.12. Трубку конденсатосборника располагают в футляре, она имеет вверху отверстие диаметром 2 мм. Такое устройство дает возможность выравнивать давления в трубке и газопроводе, поэтому конденсат не может подняться вверх по трубке, что исключает возможность его замерзания.

Рис. 4.10. Сальниковое уплотнение для футляра 1— корпус; 2— шпилька; 3— грундбукса; 4— гайка; 5— газопровод; 6— набивка из промасленной пеньки или аналогичного материала; 7— иаронитовая прокладка; 8— фланец; 9— болт; 10— футляр

Pиc. 4.11. Сборник конденсата для газопроводов О, = 200. 600 мм осушенного газа низкого давления 1— корпус; 2— труба для удаления конденсата; 3— электрод заземления; 4—подушка под ковер; 5—ковер; 6— контактная пластинка для замера разности потенциалов труба— грунт

Рнс. 4.12. Сборник конденсата для газопроводов Dy =50. 150 мм осушенного газа высокого давления ру≤0,6 МПа, 1—труба внутренняя в сборе; 2—корпус; 3— кожух из трубы 57×6; 4—электрод заземления; 5—подушка под ковер; 6—пластина контактная для замера разности потенциалов; 7—ковер большой; 8— кран

Отключающие устройства на газопроводах следует предусматривать:

— перед отдельно стоящими или блокированными зданиями;

— для отключения стояков жилых зданий выше пяти этажей;

— перед наружным газоиспользующим оборудованием;

— перед пунктами редуцирования газа (ПРГ), за исключением ПРГ предприятий, на ответвлении газопровода к которым имеется отключающее устройство на расстоянии менее 100 м от ПРГ;

— на выходе из ПРГ, закольцованных газопроводами;

— на ответвлениях от газопроводов к поселениям, отдельным микрорайонам, кварталам, группам жилых домов (при числе квартир более 400 к отдельному дому), а также на ответвлениях к производственным потребителям и котельным;

— при пересечении водных преград двумя нитками газопровода и более, а также одной ниткой при ширине водной преграды при меженном горизонте 75 м и более;

— при пересечении железных дорог общей сети и автомобильных дорог категорий I—II, если отключающее устройство, обеспечивающее прекращение подачи газа на участке перехода, расположено на расстоянии более 1000 м от дорог.

Отключающие устройства на надземных газопроводах, проложенных по стенам зданий и на опорах, следует размещать на расстоянии (в радиусе) от дверных и открывающихся оконных проемов не менее, м: для газопроводов низкого давления категории IV — 0,5; для газопроводов среднего давления категории III — 1; для газопроводов высокого давления категории II — 3; для газопроводов высокого давления категории I — 5.

Места установки отключающих устройств должны быть защищены от несанкционированного доступа к ним посторонних лиц. На участках транзитной прокладки газопроводов по стенам зданий установка отключающих устройств не допускается. Установка отключающих устройств под балконами и лоджиями также не допускается.

На участках присоединения к распределительному газопроводу газопроводов-вводов к отдельным зданиям различного назначения должны быть установлены клапаны безопасности (контроллеры) расхода газа без байпасного отверстия (перепускного отверстия для автоматического выравнивания давления). Контроллеры расхода газа устанавливают на газопроводе — вводе диаметром до 160 мм включительно давлением от 0,0025 МПа в месте его присоединения к распределительному газопроводу.

Для удаления конденсата из газопроводов устанавливают конденсатосборники, которые могут быть для низкого и среднего или высокого давлений. В конденсатосборнике низкого давления удаление конденсата производиться с помощью ручного насоса, а в среднем (высоком) давлении за счёт давления газа. Для того чтобы конденсат не замерзал в трубке, она делается составной. Конденсатосборники устанавливаются при влажном газе.

Сборник конденсата низкого давления: 1 — корпус; 2 — ковер; 3 — подушка под ковер; 4- труба для удаления конденсата; 5 — контактная пластина для замера потенциалов труба-земля; 6 — электрод заземления

Для компенсации удлинения стальных газопроводов от изменения температуры устанавливают компенсаторы, которые бывают гибкие (П- образные, S — образные, лирообразные), линзовые и резинотканевые. Линзовые и резинотканевые компенсаторы устанавливают в колодцах после задвижек по ходу газа. Наличие компенсаторов облегчает монтаж и демонтаж задвижек. Чугунные задвижки устанавливаются обязательно с компенсаторами, а остальные могут с косыми вставками, либо без фланцев на сварке.

Компенсаторы двухлинзовые 1 и П типов

При пересечении газопроводами различных препятствий и сооружений на них ставят футляры (кожухи). На концах футляра устраивают герметичные сальниковые уплотнения. На одном конце футляра устанавливается контрольная трубка.

Контрольная трубка служит для определения утечки газа из газопроводов, уложенных под землёй. Одним концом она приваривается к кожуху, а второй выводиться под ковер и закрывается пробкой.

а — на газопроводе; б — на конце футляра; 1 — газопровод; 2 — мелкий щебень; 3 — стальной кожух; 4 — стальная изолированная трубка; 5 — бетонная подушка; 6- ковер; 7 — промасленная пенька; 8 — битумная мастика

Коверы — это колодцы мелкого заложения. Они бывают большие сварные и малые чугунные. Устанавливают их опорные железобетонные подушки.

Контрольные пункты служат для замера потенциала “Труба — земля”. Устанавливают через 200 — 250 мм. Контрольные проводники выводятся под ковер.

Для электрического секционирования газопроводов устанавливают изолирующие фланцы. Собирают фланцы на изоляционных прокладках так, чтобы блуждающие токи не могли пройти с одного конца трубы (фланца) на другой.

Большой сварной (а) и малый чугунный (б) коверы

1 — корпус; 2 — крышка; 3 — болт; 4 — гайка

Ссылка на основную публикацию
Adblock detector