Условие резонанса напряжений в цепи переменного тока

Условие резонанса напряжений в цепи переменного тока

Под резонансом в электрической цепи понимают такое ее состояние, когда ток и напряжение совпадают по фазе и вся цепь ведет себя как чисто активная (рис. 1.18).

Рис. 1.18. Резонансная цепь (а) и векторная диаграмма при резонансе (б)

(из определения резонанса);
(условие резонанса напряжений);

;
;

Если то , т.е. напряжение на реактивных элементах цепи может быть больше напряжения, подводимого ко всей цепи.
,
,
т.е. цепь из сети реактивную мощность не потребляет и в сеть её не отдает;
;

.

В момент резонанса происходит обмен энергии между L и C. Из сети реактивная мощность не потребляется и в сеть не отдается, следовательно, цепь ведет себя как чисто активная.

35. Резонанс токов возникает в цепях переменного тока состоящих из источника колебаний и параллельного колебательного контура. Резонанс тока это увеличение тока проходящего через элементы контура при этом увеличение потребление тока от источника не происходит.

Рисунок 1 — параллельный колебательный контур

Для возникновения резонанса токов необходимо чтобы реактивные сопротивления емкости и индуктивности контура были равны. А также частота собственных колебаний контура была равна частоте колебаний источника тока.

Во время наступления резонанса токов или так называемого параллельного резонанса напряжение на элементах контура остается неизменным и равным напряжению, которое создает источник. Поскольку он подключен параллельно контуру. Потребление тока от источника будет минимально, так как сопротивление контура при наступлении резонанса резко увеличится.

Рисунок 2 — зависимость полного сопротивления контура и тока от частоты

Сопротивление колебательного контура относительно источника колебаний будет иметь чисто активный характер. То есть не будет, провялятся ни емкостная, ни индуктивная составляющая. И сдвиг фаз между током и напряжением будет отсутствовать.

В тоже время ток через индуктивность будет отставать от напряжения на 90 градусов. А ток в емкости буде опережать напряжение на те же 90 градусов. Таким образом, токи в реактивных элементах контура будут сдвинуты по фазе на 180 градусов друг относительно друга.

В итоге получается, что в параллельном колебательном контуре протекают реактивные токи достаточно большой величины, но при этом он от источника напряжения потребляет малый ток необходимый лишь для компенсации потерь в контуре. Эти потери обусловлены наличием активного сопротивления сосредоточенного по большей части в индуктивности.

Источник затрачивает энергию при включении, заряжая емкость. Далее энергия, накопленная в электрическом поле конденсатора, переходит в энергию магнитного поля индуктивности. Индуктивность возвращает энергию емкости, и процесс повторяется снова. Источник напряжения лишь должен компенсировать потери энергии в активном сопротивлении контура.

1. Метод контурных токов используется обычным способом, однако, к напряжениям самоиндукции на катушках добавляем напряжения взаимной индукции (типа ). Контурные токи желательно выбирать так, чтобы на каждую катушку приходился свой контурный ток.

Примечание: Перед М берем "-", так как имеем встречное включение

б. Пример

Примечание: Перед М берем "+", так как имеем согласное включение

2. Развязка индуктивных связей используется для замены индуктивно связанных катушек с одним общим зажимом на три обычных индуктивности.

Примечание: При другом расположении одноименных зажимов следует поменять всюду знак перед М.

3. Использование вместо реальных трансформаторов эквивалентных схем с идеальными трансформаторами часто упрощает расчет.

28 В электротехнике и электронике широко используются устройства, которые содержат индуктивные катушки, связанные общими магнитными потоками. Примером такого устройства является трансформатор, который служит для преобразования уровней переменных напряжений и токов и для согласования сопротивлений отдельных участков цепи.

Физическая картина заключалась в следующем: переменный ток , протекая по виткам катушки (рис. 8.1, а) создает переменный магнитный поток , который сцепляясь с витками катушки, обуславливает появление ЭДС самоиндукции eL, противодействующей по закону Ленца изменению потокосцепления , то есть

,

где — индуктивность, численно равная отношению потокосцепления самоиндукции к току, его обуславливающему.

Теперь рассмотрим явление взаимоиндукции, то есть явление наведения ЭДС в одной электрической цепи при изменении в ней потокосцепления, вызванного изменением тока в другой электрической цепи. Для этого проанализируем картину магнитного поля индуктивно-связанных катушек (рис. 8.1,б).

Рис.8.1 — К определению индуктивно связанных цепей

Связь магнитных потоков катушек обусловливает их индуктивную связь. Взаимно индуктивная связь проявляется в наведении ЭДС (называемой ЭДС взаимоиндукции) в одной катушке при изменении тока в другой близко расположенной катушке.

Цепи, в которых наводятся ЭДС взаимоиндукции, называют индуктивно связанными цепями.

Рассмотрим цепь, состоящую из двух индуктивных катушек, намотан-ных на общий сердечник (рисунок 8.2). На схеме обозначено: L1, R1 и L2, R2 – индуктивности и активные сопротивления первой и второй катушек; Мвзаимная индуктивность.

Рисунок 8.2 ‑ Схема замещения двух, индуктивно связанных,

Взаимная индуктивность M зависит от индуктивностей обоих контуров и их взаимного расположения, поэтому при некоторой ориентации даже близко расположенных контуров взаимная индуктивность может быть равной нулю. Единица измерения взаимной индуктивности и индуктивности одинакова − генри.

Каждая из катушек пронизывается двумя магнитными потоками: потоком самоиндукции, вызванным собственным током, и потоком взаимоиндукции, вызванным током другой катушки.

В соответствии с принципом наложения потокосцепление первой катушки

(8.1)

Потокосцепление второй катушки

(8.2)

Значения взаимной индуктивности М в выражениях (8.1) и (8.2) одинаковы и не могут превышать среднего геометрического из значений и :L1 и L2:

где kкоэффициент связи, характеризующий магнитную связь между катушками. Его величина равна отношению взаимной индуктивности и среднего геометрического значения индуктивностей обеих катушек:

В пределе, когда магнитный поток одной катушки полностью пронизывает витки другой, k=1. При отсутствии магнитной связи k=0.

Знаки слагаемых в (8.1) и (8.2) зависят от взаимного направления магнитных потоков катушек. В свою очередь, направления магнитных потоков зависят как от направления токов в катушках, так и от их взаимного расположения.

Читайте также:  Буш для протяжки кабеля цена

Если катушки включены таким образом, что потоки складываются, то такое включение называют согласным. Если магнитные потоки направлены навстречу друг другу, то катушки включены встречно.

При согласном направлении токов в двух индуктивно связанных ка-тушках зажимы этих катушек, относительно которых токи направлены одинаково, называютодноименными. Одноименные зажимы принято обозначать точками или звездочками.

Физически направления магнитных потоков в катушках определяется правилом правоходового винта. Например, потоки Фм1 и Фм2 на рис. 8.3,а направлены противоположно при заданных направлениях токов i 1 и i 2 , т.е. катушки включены встречно. Однако, если бы эти токи были ориентированы одинаково относительно зажимов соответственно 1 и 4, то потоки были бы направлены одинаково. Следовательно, эти зажимы можно считать одноименными.

Рисунок 8.3 — Встречное включение катушек

На рис. 8.3,б изображена эл. схема, соответствующая рисунку 8.3,а, где

наличие индуктивной связи между катушками показано дугой с стрелками, над которой стоит символ "М", а одноименные зажимы помечены символами (*).

Определим напряжения на зажимах индуктивно связанных катушек на основе второго закона Кирхгофа:

(8.3)

(8.4)

Основной формой расчета цепей синусоидального тока является метод комплексных амплитуд. Рассмотрим применение этого метода для расчета индуктивно связанных цепей. Пусть цепь на рисунке 8.1 находится в режиме гармонических колебаний. Запишем уравнения (8.3), (8.4) в комплексной форме:

; (8.5)

, (8.6)

где — комплекс сопротивления взаимоиндукции; знак плюс (+М) ставят при согласном включении катушек; знак минус (-М) — при их встречном включении.

Резонансом напряжений называется режим электрической цепи синусоидального тока с последовательным соединенением резистивного R, индуктивноо L и емкостного С элементов, при котором угол сдвига фаз между общим напряжением (напряжением сети) и током в цепи равен нулю.

Условием наступления резонанса напряженийявляется равенство индуктивного и емкостного сопротивлений цепи:

Электрическая цепь, питаемая синусоидальным переменным током, в которую входит конденсатор и катушка индуктивности называется колебательным контуром.

Резонанс напряжений можно получить тремя способами:

1. Изменением частоты w синусоидального тока;

2. Изменением величин индуктивности или емкости колебательного контура, при котором меняются индуктивное XL или емкостное XC сопротивление;

3. При одновременном изменении параметров w, L, C цепи колебательного контура.

Из условия резонанса напряжения (3.27) следует, что так как

то при резонансе напряжений

, (3.28)

где wрез, рад/сек – резонансная частота.

Резонанс напряжений характеризуется рядом существенных особенностей:

1. Так как при резонансе напряжений угол сдвига фаз между напряжением и током равен нулю (j = yu – yi = 0), то коэффициент мощности при резонансе принимает наибольшее значение, равноеединице:

В этом случае, как видно из векторной диаграммы на рис. 3.22,а, вектор тока и вектор общего напряжения совпадают по направлению, так как они имеют равные начальные фазы yu = yi.

2. При резонансе напряжений векторы напряжения на индуктивном и емкостном элементах оказываются равными по величине и противоположными по фазе:

так как XLI = XCI, а в комплексной форме (см. рис. 3.22,а).

3. Напряжение на активном сопротивлении при резонансе напряжений оказывается равным напряжению сети (рис. 4.22,а) так как

. (3.31)

В комплексной форме .

4. Отношение индуктивного или емкостного сопротивлений к активному сопротивлению цепи с R,L,C-элементами при резонансе называется добротностью колебательного контураQ

. (3.32)

Умножив числитель и знаменатель этих дробей на ток I, получим выражения для добротности колебательного контура через отношения напряжений

. (3.33)

При больших значениях индуктивного XL и емкостного XC сопротивлений и малых значениях активного сопротивления R цепи (R > U:

то есть напряжение на индуктивности и конденсаторе последовательного колебательного контура при его высокой добротности в режиме резонанса напряжений могут во много раз превысить напряжение питания.

Например, если у колебательного контура последовательной цепи с
R,L,C-элементами, питаемым синусоидальным напряжением U = 220 В, R = 1 Ом, XLрез = XCрез = 1000 Ом, то напряжение на индуктивности и конденсаторе, как следует из (3.34) равно:

Поэтому при работе электротехнического оборудования, питаемого сетевым напряжением 220/380 вольт резонанс напряжений никогда не используется.

Однако в разнообразных устройствах радиотехники и электроники, где напряжение питания колебательного контура составляет микровольты
(1мкВ = 10 -6 В), резонанс напряжений широко используется, позволяя многократно усилить входной сигнал в виде синусоидального напряжения.

Рис. 3.22. Резонанс напряжений в цепи с последовательным соединением R,L,C-элементов

а) – векторная диаграмма; б) – вырожденный треугольник сопротивлений (Х = 0);

в) – вырожденный треугольник мощностей (Q = 0)

5. Так как при резонансе напряжений XL = XC (3.27), то полное сопротивление цепи принимает минимальное значение, равное активному сопротивлению:

, (3.35)

а общее реактивное сопротивление цепи становится равным нулю:

Поэтому треугольник сопротивлений при резонансе напряжений имеет вырожденный характер, как показано на рис. 3.22,б.

6. На основании закона Ома и из формулы (3.35) следует, что ток I в цепи при резонансе напряжений достигает наибольшего значения:

Отсюда следует, что ток в цепи при резонансе напряжений может оказаться значительно больше тока, который мог бы быть при отсутствии резонанса.

Это свойство позволяет обнаружить резонанс напряжений при изменении частоты w, изменении индуктивности L или емкости С. Однако резонансный ток при определенных условиях опасен – он может, достигнув чрезмерно большой величины, привести к перегреву элементов цепи и выходу их из строя.

7. Активная мощность при резонансе напряжений имеет наибольшее значение, так как связана с квадратом тока

8. Общая реактивная мощность Q при резонансе напряжений равна нулю:

так как UL = UC . Поэтому треугольник мощностей при резонансе имеет вырожденный характер, как показано на рис. 3.22,в.

то есть эти мощности могут во много раз превысить потребляемую полную мощность S. При этом полная мощность S при резонансе целиком выделяется на резистивном элементе R, в виде активной мощности Р.

Читайте также:  Как сделать черный фломастер

Физически это объясняется тем, что при резонансе напряжений происходит периодический обмен энергии магнитного поля в индуктивном элементе и энергии электрического поля в конденсаторе. При этом интенсивность этого обмена, как величины реактивных мощностей QL и QC , в сравнении с потребляемой активной мощностью Р

определяется соотношениями реактивных и активного сопротивления цепи, как и для напряжений UL, UC и U, то есть добротностью Q колебательного контура цепи (см. п.4).

Кривые, выражающие зависимость полного тока I, сопротивления цепи Z, напряжения на индуктивности UL и конденсаторе UС , коэффициента мощности cosj от емкости батареи конденсатора С, называются резонансными кривыми.

На рис. 3.23 приведены резонансные кривые (UL, UС, I, Z, cosj) = f(C), построенные в общем виде при U = const и w = 2pf = const.

Рис. 3.23. Резонансные кривые UL , UС , I , Z, cosj в зависимости от емкости С
при последовательном соединении катушки индуктивности и батареи конденсаторов

Анализ этих зависимостей показывает, что при увеличении емкости С батареи конденсаторов полное сопротивление цепи Z сначала уменьшается, достигает минимума в режиме резонанса и становится равным активному сопротивлению R , а затем снова возрастает с увеличением емкости. Соответственно изменению Z меняется полный ток цепи (по закону Ома I обратно пропорционален Z): с ростом емкости конденсаторов ток I вначале увеличивается, достигает максимума в режиме резонанса, а затем вновь уменьшается.

Коэффициент мощности cosj изменяется с изменением емкости С в том же порядке: сначала с увеличением емкости С коэффициент мощности возрастает, достигая максимума равного единице в режиме резонанса, а затем уменьшается, в пределе стремясь к нулю.

Напряжения на индуктивности и конденсаторах имеют максимумы вблизи режима резонанса и становятся равными друг другу в этом режиме. Следует отметить, что достигаемые величины напряжений на конденсаторах и катушке индуктивности в режиме резонанса напряжений и вблизи него могут во много раз превышать входное напряжение приложенное ко всей цепи (см. п. 4).

С точки зрения электробезопасности и безаварийного режима работы, это следует учитывать при проведении исследования резонанса напряжения на стенде, задавая величину напряжения питания цепи U в достаточно низких пределах (U = 20 ¸ 25 В).

Таким образом, резонансные кривые позволяют установить минимальное полное сопротивление и наибольший ток в цепи при максимуме коэффициента мощности, равном единице, когда в цепи с последовательным соединением катушки индуктивности и батареи конденсаторов возникает резонанс напряжений.

Выводы:

1. Резонанс напряжений в промышленных электротехнических установках, питаемых синусоидальным сетевым напряжением 220/380 В – нежелательное и опасное явление, так как может вызвать аварийную ситуацию при возможном перенапряжении на отдельных участках цепи, привести к пробою изоляции обмоток электрических машин и аппаратов, изоляции кабелей и конденсаторов и опасно для обслуживающего персонала.

2. В то же время, резонанс напряжений широко используется в радиотехнике, в автоматике и электронике для настройки колебательных контуров в резонанс на определенную частоту, а также в различного рода приборах и устройствах, основанных на резонансном явлении.

Содержание работы

Лабораторная работа 2б делится на четыре части:

1. Подготовительная часть.

2. Измерительная часть (проведение опытов и снятие показаний приборов).

3. Расчетная часть (определение расчетных величин по формулам).

4. Оформительская часть (построение векторных диаграмм).

Примечание

Электромонтажные работы по исследованию резонанса напряжений в цепи с последовательным соединением R,L,C-элементов на модернизированном лабораторном стенде ЭВ-4 не проводятся, в отличие от работ на старых стендах (см. в [2] – Работа 2б, п.2. Электромонтажная часть).

1. Подготовительная часть

Подготовка к проведению лабораторной работы включает:

1. Изучение теоретической части настоящего пособия и литературы [1,2,3,4], относящихся к теме данной работы.

2. Предварительное оформление лабораторной работы в соответствии с существующими требованиями [2,3].

В результате предварительного оформления лабораторной работы №2б в рабочей тетради или журнале (на листах формата А4 с компьютерной распечаткой) студентом должен быть заполнен титульный лист, в работе должны быть указаны название работы и ее цель, приведены основные сведения по работе, взятые из раздела выше и формулы, необходимые для вычисления расчетных величин, представлены принципиальные и эквивалентные схемы замещения, заготовлены таблицы, соответственно числу опытов в работе.

Кроме этого, должно быть оставлено свободное место для построения векторных диаграмм.

2. Измерительная часть

Необходимые измерения параметров исследуемой цепи однофазного тока с последовательным соединением электроприемников при резонансе напряжений проводятся с помощью принципиальной схемы (рис. 3.24). Данная схема соответствует панели модернизированног стенда ЭВ-4 [4] с аналогичной мнемосхемой и цифровыми измерительными приборами (см. фото на рис. 3.26).

Для более заметного вида резонансных кривых в последовательной цепи электроприемников резистор R отсутствует (на принципиальной схеме рис. 3.23 он зашунтирован).

Этой схеме соответствует схема замещения с последовательно соединенными катушкой индуктивности и батареей конденсаторов, показанная на рис. 3.25.

3.24 Принципиальная схема цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

3.25 Схема замещения цепи с последовательно соединенными
катушкой индуктивности и батареей конденсаторов
для исследования резонанса напряжений

1. Перед подачей питания к исследуемой цепи на панели стенда с мнемосхемой и цифровыми измерительными приборами (рис. 3.26) перевести все выключатели (S1 ÷ S6, S’1 ÷ S’6), расположенные на этой панели, в нижнее положение (состояние – «откл»).

Рис. 3.26. Паналь стенда с цифровыми измерительными приборами и
мнемосхемой для проведения лабораторой работы 2б «Резонанс напряжений
в однофазной цепи с активно-реактивными элементами»

2. На панели стенда из последовательной цепи R,L,C-элементов исключить резистор R, зашунтировав его с помощью электромонтажного провода (красный провод-шунт на принципиальной схеме рис. 3.24) вставив его концы в гнезда по бокам вольтметра VR.

Читайте также:  Выкопали гладиолусы что дальше видео

3. Установить начальную общую емкость конденсаторов С = 40 мкФ нажатием соответствующих черных кнопок выключателей рядом с подключаемыми конденсаторами на панели №4 стенда с мнемосхемой батареи конденсаторов (см. рис. 3.28).

4. Подключить лабораторный автотрансформатор (ЛАТР), установленный на горизонтальной панели блока питания (рис. 3.27) к сетевому напряжению (

220 В), нажав черные кнопки «вкл» выключателей. При этом загораются две сигнальные лампы «сеть». После этого нужнообязательноповернуть ручку регулятора ЛАТРАа против часовой стрелки до упора, тем самым, снизив напряжение на его выходе до нуля.

Рис. 3.27. Панель блока питания лабораторного стенда

Рис. 3.28. Панель №4 стенда с мнемосхемами батареи конденсаторов
и катушки индуктивности

5. Подать регулируемое напряжение от ЛАТРа ко входу исследуемой цепи и подключить цифровые измерительные приборы, установив на панели стенда с мнемосхемой кнопки всех выключателей (S1 ÷ S6, S’1 ÷ S’6) в положение «вкл». При этом должны засветиться зеленые цифры на электроизмерительных приборах.

6. Плавным поворотом по часовой стрелке ручки регулятора ЛАТРа (рис. 3.27) установить напряжение U на входе цепи порядка 20 ÷ 25 В, контролируя его цифровым вольтметром V (прибор ЩП02М, установленный слева на панели стенда – рис. 4.26). Следует поддерживать установленное напряжение постоянным во всех опытах с помощью ЛАТРа.

7. В процессе исследования цепи с последовательно соединенными катушкой индуктивности и батареей конденсаторов провести 9 опытов с различной емкостью батареи конденсаторов (величины емкостей для каждого опыта указаны в табл. 3.5) нажатием соответствующих кнопок выключателей на панели №4 стенда (рис. 3.28), постепенно увеличивая емкость с 40 мкФ до 200 мкФ. Перед подключением дополнительных конденсаторов в каждом опыте нужно обязательно отключить исследуемую цепь от источника питания (выхода ЛАТРа), переведя выключатели (S1, S’1) в нижнее положение «откл», а перед проведением замеров вновь подключить к напряжению питания цепь с помощью тех же выключателей.

8. Во всех опытах измерить входное напряжение U, потребляемую активную мощность Р и протекающий по цепи ток I, соответственно цифровыми измерительными приборами: вольтметром V, ваттметром W и амперметром А (см. принципиальную схему на рис. 3.24 и панель стенда на рис. 3.26).

9. Напряжение на батарее конденсаторов UС и напряжение на катушке индуктивности UК с параметрами RK, LK измерить цифровыми вольтметрами, соответственно VC и VK, установленными на панели стенда (см. рис. 3.26).

10. Полученные результаты измерений каждого опыта занести в таблицу 3.5.

11. В конце измерительной части данной работы нужно отключить исследуемую цепь от источника питания и сам блок питания от силового щитка с помощью выключателей S1 и S1 ‘ на панели с мнемосхемой (рис. 3.26) и красной кнопки «выкл» выключателя на панели блока питания (рис. 3.27). Сообщить преподавателю об окончании измерений и приступить к вычислениям параметров цепи.

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений возникает в последовательной RLC-цепи.

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Резонанс токов

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

Выразим резонансную частоту

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

Ссылка на основную публикацию
Adblock detector